13 research outputs found

    Parameter Estimation of Asymmetrical Six-phase Induction Machines using Modified Standard Tests

    Get PDF
    In multiphase machine drives, accuracy of the estimated machine parameters is crucial for effective performance prediction and/or control. While a great amount of work has been done on parameter estimation for three-phase machines, corresponding discussions for six-phase machine remain scarce. It has been proven in the literature that the effect of mutual leakage inductance between different winding layers has a significant impact on the equivalent machine reactance, which challenges the standard separation method of stator and rotor leakage inductances from the measured locked-rotor impedance. In this paper, parameter identification of an asymmetrical six-phase induction machine using six-phase no-load and locked-rotor tests is discussed. A zero-sequence test using an improved equivalent circuit is proposed to improve the accuracy of the estimated parameters. The concept is verified using experimental results obtained from a low-power prototype asymmetrical six-phase machine

    Single-Phase Charging of Six-Phase Integrated On-Board Battery Charger using Predictive Current Control

    Get PDF
    This work was achieved by the financial support of ITIDAs ITAC collaborative funded project under the category type of advanced research projects (ARP) and Grant Number ARP2020.R29.7.This work was achieved by the financial support of ITIDAs ITAC collaborative funded project under the category type of advanced research projects (ARP) and Grant Number ARP2020.R29.7.Integrated On-Board Battery Chargers (IOBCs) have shown promise as an elegant charging solution for electric vehicles in recent literature. Although the three-phase charging technique of IOBCs has extensively been discussed in the literature, single-phase charging is still a challenging research topic. The Predictive Current Control (PCC) approach has shown many benefits, including a straightforward algorithm, simple implementation, comparatively quick response, and appropriate performance, when compared to conventional control techniques. This paper investigates the impact of single-phase charging of a six-phase-based IOBC system with different winding configurations using PCC, which, up to the best authors’ knowledge, has not been conceived thus far. Under single-phase charging, the zero-sequence current component is utilized to ensure zero torque production during charging mode. Since the impedance of the zero subspace is highly affected by the employed winding design, the performance of PCC with different winding layouts of either induction machine (IM) or permanent magnet synchronous machine (PMSM) is investigated and compared. The proposed method is experimentally validated using a 1.1kW six-phase IM and a 2 kW 12-slot/10-pole PMSM. Finite Element analysis is also carried out to investigate the effect of single-phase charging mode on the induced radial forces and vibration level when PM machine is employed

    Investigation of electromagnetic torque production in induction motor during charging operation

    No full text

    Performance of an Eleven-phase Induction Machine under Fault Conditions

    No full text
    corecore